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Cross-talk between salicylic acid (SA) and jasmonic acid (JA) 
defense signaling pathways allows a plant to finely tune its response 
to the attacker encountered. In Arabidopsis, pharmacological 
experiments revealed that SA exerts a strong antagonistic effect 
on JA-responsive genes, such as PDF1.2, indicating that the SA 
pathway can be prioritized over the JA pathway. We investigated 
the putative role of histone modifications in the regulation of 
SA-mediated suppression of PDF1.2 transcription. Chromatin 
immunoprecipitation analysis using an antibody directed against 
acetylated histone H3 revealed that SA does not affect the asso-
ciation of this histone modification at the PDF1.2 promoter, 
suggesting that chromatin remodeling does not play a major role 
in SA/JA cross-talk.

Plants can activate specific defense responses in order to resist 
attack by deleterious organisms. Apart from pre-existing chemical or 
structural barriers, inducible defenses are triggered, which often act 
systemically throughout the plant and confer broad-spectrum resis-
tance. The plant hormones salicylic acid (SA), jasmonic acid (JA), 
and ethylene (ET) play important roles in the regulation of these 
induced defenses.1-7 The corresponding signal transduction path-
ways cross-communicate, providing the plant with a highly flexible 
defense signaling network. Cross-talk between signaling pathways is 
thought to optimize the defense reaction to a particular attacker by 
enhancing the appropriate response, while suppressing suboptimal 
reactions. Indeed, trade-offs between defense signaling pathways 
have been demonstrated in several plant species.8-10

Elucidation of the molecular mechanism underlying this pathway 
cross-talk will provide insight into how a plant copes with multiple 
stress inputs and relays these to an appropriate defense reaction.11,12 
Several key regulatory proteins involved in SA-mediated suppression 
of JA-responsive genes have been identified in Arabidopsis thaliana.13 
Previously, we demonstrated that the defense regulatory protein 
NPR1 is required for this SA/JA cross-talk.14 In mutant npr1-1 
plants, the SA-mediated suppression of JA-responsive gene expres-
sion was completely abolished. The transcription factor WRKY70 
was shown to act as an activator of SA-responsive genes and a 
repressor of JA-inducible genes, thereby functioning as a node of 
convergence between both pathways.15,16 Recently, overexpression 
of the SA-regulated glutaredoxin GRX480 was found to antagonize 
JA-responsive PDF1.2 transcription.17 Furthermore, a role for redox 
modulation was suggested in the SA/JA antagonism.12

To identify novel key players in SA/JA cross-talk we assessed 
whether chromatin remodeling plays a role in the SA-mediated down-
regulation of JA-responsive genes. DNA is packaged with histone 
proteins into chromatin, which physically restricts the accessibility of 
the genome to regulatory proteins, such as transcription factors. The 
chromatin configuration can be altered to allow or prevent access of 
the transcription machinery by covalent modifications of the exposed 
N-terminal histone tails in the nucleosome. Histone acetylation is 
mediated by the activity of histone acetyltransferases (HATs) and is 
often associated with increased gene activity. Histone deacetylation, 
mediated by histone deacetylases (HDACs), and methylation are 
generally correlated with transcriptional repression.18,19 Thus, gene 
expression can be regulated at the level of histone modifications. 
Previously, a HDAC was found to interact with the JA regulatory 
protein COI1.20 The expression of this gene, as well as another HDAC, 
HDA19, was shown to be upregulated by JA and the ET precursor 
1-aminocyclopropane-1-carboxylic acid (ACC).21 Overexpression of 
HDA19 enhanced expression of several JA- and ET-responsive genes 
and conferred increased resistance to the necrotrophic pathogen 
Alternaria brassicicola.21 Chromatin immunoprecipitation analysis 
demonstrated that induction of SA-responsive PR-1 gene expres-
sion is associated with an increase in histone acetylation at the PR-1 
promoter in Arabidopsis and tobacco,22,23 suggesting involvement of 
histone modifications in the activation of SA-responsive genes too. 
Since both SA-responsive and JA-responsive defense signaling path-
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ways involve chromatin remodeling,21-23 we investigated the potential 
influence of histone acetylation on the SA-mediated suppression of 
JA-responsive gene expression.

Five-week-old A. thaliana wild-type Col-0 and mutant npr1-1 
plants were treated with an aqueous solution of 1 mM SA, 0.1 mM 
MeJA, or a combination of both chemicals as described previously.12 
Leaf tissue was harvested 24 h after induction, and the expression 
of SA-responsive PR-1 (At2g14610) and MeJA-responsive PDF1.2 
(At5g44420) marker genes was assessed. As expected, SA induced 
PR-1 expression and suppressed MeJA-induced expression of PDF1.2 
in Col-0 plants (Fig. 1A). Both induction of PR-1 and suppression 
of PDF1.2 by SA was blocked in mutant npr1-1, confirming that 
the plant material displayed NPR1-dependent SA/JA cross-talk 
(Fig. 1A).14 This plant material was subjected to chromatin immu-
noprecipitation (ChIP) analysis,7 using an antibody directed against 
acetylated histone H3 (AcH3; 06-599; Upstate, Lake Placid, USA), 
which is a marker for a more transcriptionally permissive state.19,24 
RT-Q-PCR analysis was performed on 1.5 μL immunoprecipitated 
and non-immunoprecipitated input DNA with primers designed to 
amplify fragments of the PR-1 promoter (PR-1 Fw; 5' TCG GTC 
CCT AGA GTT TTT CAA 3' and PR-1 Rv; 5' CCG CCA CAT 
CTA TGA CGT AAG 3') and the PDF1.2 promoter (PDF1.2 Fw; 
5' TTC AGT AAT AGG TGT GTC CCA GG 3' and PDF1.2 Rv; 
5' GCG GCT GGT TAA TCT GAA TGG 3'). As a control, primer 
sets were included that amplify promoter fragments of two constitu-
tively expressed marker genes, GAPDH (GAPDH Fw; 5' GCA AAG 
CTC ATT GGC TGT CA 3' and GAPDH Rv; 5' GGA AAC TAA 
TGG CGC TTG GA 3') and UBQ10 (UBQ10 Fw; 5' TTG CCA 
ATT TTC AGC TCC AC 3' and UBQ10 Rv; 5' TGA CTC GTC 
GAC AAC CAC AA 3').25 The amount of immunoprecipitated 
DNA was calculated relative to the input DNA using the 2-ΔΔC

T 
method.26 The CT values of input and ChIP DNA were averaged 
before performing the ΔCT calculation, and the variance estimated 
from the replicate CT values was carried through to the final calcu-
lation of relative quantities using standard propagation of error 
methods. The error was estimated by calculating the 2-ΔΔC

T term 
using ΔCT plus the standard deviation and ΔCT minus the standard 
deviation.26 Next, the amount of immunoprecipitated DNA was 
corrected for dilution factors, and control-treated samples of Col-0 
and npr1-1 were set at 1.

Figure 1B shows that SA treatment resulted in an increase of 
AcH3 at the PR-1 promoter, confirming previous findings with 
the SA analog benzothiadiazole S-methyl ester (BTH) as the 
inducing agent.22 This increase was absent in npr1-1, suggesting 
that SA-mediated acetylation of histone H3 at the PR-1 promoter is 
NPR1-dependent. However, the combined treatment with SA and 
MeJA did not result in AcH3 enrichment at the PR-1 promoter, 
while the PR-1 gene was normally expressed (Fig. 1A and B). 
Therefore, the chromatin structure around the PR-1 promoter 
appears to be sufficiently relaxed to allow access to the transcriptional 
machinery. This notion is supported by data on the epigenetic regu-
lation of the WRKY70 transcription factor.27 It was suggested that 
the chromatin structure of WRKY70 target genes, such as PR-1, is 
sufficiently open to allow a fast response to stimuli. Consequently, by 
epigenetic regulation of a single transcription factor, the expression of 
a large number of genes can be affected, thus significantly increasing 
the regulatory potential of chromatin remodeling.27

In contrast to the PR-1 promoter, AcH3 association at the 
PDF1.2 promoter did not surmount the fluctuation observed at the 
promoters of the two constitutively expressed genes, GAPDH and 
UBQ10 (Fig. 1B). Hence, the negative effect of SA on MeJA-induced 
expression of PDF1.2 did not correlate with changes in AcH3 
histone modification. These data suggest that chromatin remodeling 
does not play a major role in the regulation of SA/JA cross-talk. 
Conclusive evidence should be provided by additional experiments 
and include analysis with antibodies directed against multiple histone 
modifications.
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